combinatorics data structures hashing math number theory sortings two pointers

Please click on ads to support us..

C++ Code:

#include <bits/stdc++.h>
using namespace std;
 
#include <ext/pb_ds/assoc_container.hpp>
using namespace __gnu_pbds;
 
#define ll long long
#define fu(i, a, b) for(ll i = a; i < b; i++)
#define fd(i, a, b) for(ll i = a - 1; i >= b; i--)
#define fastifier ios_base::sync_with_stdio(0); cin.tie(NULL); cout.tie(NULL);
#define x first
#define y second
#define nl '\n'
#define pl pair<ll, ll>
#define siz(x) (ll)x.size()
#define bit(i, k) (i & (1 << k))
#define cbit(i) __builtin_popcount(i)
#define fileInput freopen("inp.txt", "r", stdin);
#define fileOutput freopen("out.txt", "w", stdout);
#define uid(a, b) uniform_int_distribution<ll>(a, b)(rng) 
 
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
 
template<class T> using ordset = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
 
template<class T> bool maxi(T& a, const T& b) {
    return a < b ? a = b, 1 : 0;
}
 
template<class T> bool mini(T& a, const T& b) {
    return a > b ? a = b, 1 : 0;
}
 
const ll inf = 1e15;
const ll mod = 998244353;
const ll def = 1e6+1;    

vector<ll> rg[def];
void dostuff(vector<pl> v){
    set<pl> s1, s2;

    fu(i, 0, siz(v)){
        s1.insert(v[i]);
        s2.insert({v[i].y, v[i].x});
    }

    while (siz(s1) > 0){
        pl p1 = *s1.rbegin();
        s1.erase(p1);

        swap(p1.x, p1.y);
        auto it = s2.lower_bound(p1);

        if (p1.x > (*s2.begin()).x){
            it--;
            pl p2 = *it;

            s2.erase(p1);
            swap(p1.x, p1.y);
            swap(p2.x, p2.y);

            if (p2.y < p1.x){
                rg[p1.x].push_back(p1.y);
                continue;
            }
            
            s1.erase(p2);
            swap(p2.x, p2.y);
            s2.erase(p2);
            swap(p2.x, p2.y);

            if (p2.x < p1.x){
                s1.insert({p2.x, p1.x - 1});
                s2.insert({p1.x - 1, p2.x});
            }

            s1.insert({p1.x, p2.y});
            s2.insert({p2.y, p1.x});

            if (p2.y < p1.y)
                rg[p2.y + 1].push_back(p1.y);
        }

        else{
            s2.erase(p1);
            rg[p1.y].push_back(p1.x);
        }
    }
}

void dostuff2(ll n){
    fu(i, 1, n + 1){
        if (siz(rg[i]) > 1){
            sort(rg[i].begin(), rg[i].end());
            vector<ll> v = rg[i];

            rg[i].clear();
            fu(j, 1, siz(v) + 1){
                if (j == siz(v) || v[j] != v[j - 1])
                    rg[i].push_back(v[j - 1]);
            }

            fu(j, 1, siz(rg[i])){
                if (rg[i][j - 1] < rg[i][j])
                    rg[rg[i][j - 1] + 1].push_back(rg[i][j]);
            }

            rg[i].clear();
            rg[i].push_back(v[0]);
        }
    }
}

ll res = 1;
ll fact[def], invf[def];

ll powmod(ll a, ll b){
    if (b == 0) return 1;
    if (b % 2 == 0){
        ll val = powmod(a, b / 2);
        return (val * val) % mod;
    }

    else
        return (powmod(a, b - 1) * a) % mod;
}

ll mmod(ll n){
    n %= mod;
    while (n < 0)   
        n += mod;

    return n;
}

ll catalan(ll n){
    ll res = fact[2 * n];
    res = mmod(res * invf[n + 1]);
    res = mmod(res * invf[n]);

    return res;
}

void initalize(){
    fact[0] = 1;
    fu(i, 1, def)
        fact[i] = (fact[i - 1] * i) % mod;

    invf[def - 1] = powmod(fact[def - 1], mod - 2);
    fd(i, def - 1, 0)
        invf[i] = mmod(invf[i + 1] * (i + 1));
}

void plswork(ll l, ll r){
    ll len = r - l + 1;
    fu(i, l, r + 1){    
        if (siz(rg[i]) > 0){
            if (i == l && rg[i][0] == r) continue;
            plswork(i, rg[i][0]);
            len -= rg[i][0] - i + 1;

            i = rg[i][0];
        }
    }

    res = mmod(res * catalan(len / 2));
}

void solve(){
    ll n, k;
    cin >> n >> k;

    res = 1;
    fu(i, 1, n + 1)
        rg[i].clear();

    vector<pl> v;
    fu(i, 0, k){
        ll l, r;
        cin >> l >> r;

        v.push_back({l, r});
    }

    v.push_back({1, n});
    dostuff(v);
    dostuff2(n);

    fu(i, 1, n + 1){
        fu(j, 0, siz(rg[i])){
            if ((rg[i][j] - i) % 2 == 0){
                cout << 0 << nl;
                return;
            }
        }
    }

    plswork(1, n);
    cout << res << nl;
}                   

int main(){
    fastifier; 
    ll t;
    cin >> t;

    initalize();
    while (t--)
    {
        solve();
    }
    
    return 0;
}


Comments

Submit
0 Comments
More Questions

174. Dungeon Game
127. Word Ladder
123. Best Time to Buy and Sell Stock III
85. Maximal Rectangle
84. Largest Rectangle in Histogram
60. Permutation Sequence
42. Trapping Rain Water
32. Longest Valid Parentheses
Cutting a material
Bubble Sort
Number of triangles
AND path in a binary tree
Factorial equations
Removal of vertices
Happy segments
Cyclic shifts
Zoos
Build a graph
Almost correct bracket sequence
Count of integers
Differences of the permutations
Doctor's Secret
Back to School
I am Easy
Teddy and Tweety
Partitioning binary strings
Special sets
Smallest chosen word
Going to office
Color the boxes